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Confinement of a mirror plasma with an anisotropic electron distribution function
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A theoretical model has been developed for an electron-cyclotron-resonance-heated plasma confinement in
a mirror magnetic trap. The model is based on the simultaneous study of noncollisional kinetics of electrons
and gas dynamics of ions. At the trap center, the electron velocity distribution function is approximated by
bi-Maxwell distribution with two effective temperatures, transverse and longitudinal to the magnetic field.
Electrons were assumed to be hotter than ions. Axial distributions of the ambipolar potential and plasma
density as well as the ion confinement time have been investigated both numerically and analytically. A simple
formula for the lifetime is suggested. Numerical simulations as well as the formula show that the confinement
time is heavily dependent on the electron distribution anisotropy and, in the strongly anisotropic case, on ion
temperature if the latter is not too small. With increasing anisotropy the ambipolar potential changes qualita-
tively, acquiring a peak between the trap center and the plug.@S1063-651X~98!09705-0#

PACS number~s!: 52.50.Gj, 52.55.Dy, 52.55.Jd
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I. INTRODUCTION

Employment of high-power gyrotrons and magnetrons
electron-cyclotron-resonance~ECR! plasma heating ha
made it possible to get mirror plasmas with a highly en
getic electron component@1–4#. As a result, open magneti
traps with powerful ECR heating~ECRH! are widely used in
applied and fundamental research. The traps are basi
employed as external ion sources for cyclotron accelera
@5#. In addition, the extracted ion beams are successf
used in atomic and solid-state physics, material scien
semiconductor fabrication@5#, and ion-beam lithography@6#.
Another promising application of ECRH traps is their use
soft-x-ray sources@7,8,4#.

Expanding applications of traps with an intense ECR
require an adequate theory of plasma confinement. Powe
ECRH produces a strongly anisotropic electron velocity d
tribution function ~EDF!: The mean energy of the motio
transverse to the magnetic field is much greater than the
ergy of the longitudinal motion@9,10#. The most popular
models for the plasma lifetime@11–13# do not take into ac-
count that the intense heating strongly effects confinem
processes. The Pastukhov model@11,12# analyzes electron
diffusion into the loss cone of velocity space; only diffusio
caused by Coulomb collisions is considered. However,
to intense heating, the electron motion in velocity space
quite different: The prevailing diffusion mechanism is n
the Coulomb scattering, but an interaction with the rf fie
@10#. The Pastukhov model does not consider the latter ch
nel of losses.

The Ryutov-Mirnov gas dynamic trap model@13# consid-
ers plasma losses as a gas leakage from a vessel throu
nozzle, where the Maxwell EDF is assumed. The model d
not take into account that an anisotropic EDF may caus
much bigger lifetime than an isotropic one because of a p
fect confinement of large pitch-angle electrons that preva
an anisotropic case.
571063-651X/98/57~5!/5937~8!/$15.00
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The paper proposes a model of plasma confinement u
intense ECRH conditions. It is assumed that we know
EDF at the trap center formed by interactions of electro
with the intense resonance field. The use of a model EDF
us avoid solving a problem of electron diffusion in veloci
space caused by the rf field. Within the model framewo
ion confinement time, self-consistent profiles of ambipo
potential, and plasma density are deduced by means of
lytical estimations and numerical studies.

II. MODEL DEVELOPMENT

A. Principles of the model

The model studies a steady-state confinement of EC
plasma in a mirror magnetic trap~Fig. 1!. The steady state
results from a balance between two effects: electron-imp
ionization of neutral atoms and leakage of the charged p
ticles through the plugs. A two-component plasma~singly
charged ions and electrons! is being considered. The mag
netic field is assumed to be large enough to neglect ra
electron and ion losses.

According to theoretical studies@10#, under the powerful
ECRH, the EDF at the central part of the trap is stretch
alongVe' @Fig. 2~a!#; Vei ,Ve' are electron velocity compo

FIG. 1. Axial magnetic inductionB(x) profile. The number of
neutral atoms ionized in a unit volume per unit timeG(x) is not to
scale.x50 is a plane of symmetry.
5937 © 1998 The American Physical Society
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5938 57A. V. TURLAPOV AND V. E. SEMENOV
nents;i and' in subscripts designate axial and radial dire
tions. A much greater velocity spread in the radial direct
than in the axial one is characteristic for ECR ion sou
plasmas@9#. Two electron fractions can be distinguishe
@Fig. 2~a!#: an energetic-hot electron population with me
energy ~effective temperature! Te' and a cold componen
with temperatureTei . Anisotropy of the distribution is con
centrated in the hot fraction, while the cold-electron distrib
tion is isotropic. ECRH plasma experiments give charac
istic valuesTe'51 – 50 keV andTei510– 30 eV@1,2,7#.

That anisotropic EDF results from the interaction of ele
trons with the ECR frequency field@14,10#. The interaction
causes electron diffusion in the plane of perpendicular
locities. The rf-induced diffusion is very strong: It fills th
loss cone of velocity space even in the absence of the C
lomb collisions and boostsTe' . Formation of the EDF and
plasma confinement are closely linked processes. Here w
not attempt to solve both problems. Upon taking some mo
for the electron velocity distribution, we do not need to kno
the detailed mechanism of the electron leak from the trap
order to compute the plasma lifetime. Had we known
mechanism, we could have computed the input rf power
quired to gain particular electron temperaturesTe' andTei .
We only use the bi-Maxwell model distribution in order
simplify computations. Our basic results can be formula
in terms of characteristic transverse and longitudinal te
peratures.

Ion motion is to be described gas dynamically because
are primarily interested in the systems used as ECR ion
soft-x-ray sources. In those applications ions are rather c
Tion,Tei @1,3#.

We assume quasineutrality and study plasma both in
and outside the trap. The latter enables us to unambiguo
determine the ion velocity in the plug and thereby uniqu
compute the ion confinement time and distributions
plasma density and ambipolar potential.

The problem being discussed is close to the problem
ambipolar potential formation in the plug/barrier cell of th
tandem mirror machine@15,16# used for fusion research
However, there are two important differences: In the lat
problem~i! ions are much hotter and~ii ! electron distribution
is less anisotropic because electrons may be energeti
coupled with ions in the central cell and, because of the la
scale of the tandem mirrors, input ECRH power per elect
is less than in ECR ion and soft-x-ray sources.

FIG. 2. Electron velocity distribution function~a! at the central
cross section and~b! outside the trap atB,B0(12Tei /Te').
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B. Electron velocity distribution function

Assuming that the ECR-heated zone is located at the c
tral cross section of the trap, we approximate the EDF in t
section by a bi-Maxwell distribution@Fig. 2~a!#

f e~x50,Vei ,Ve'!5expF2
mVei0

2

2Tei
2

mVe'0
2

2Te'
G , ~1!

wherem is the electron mass, the node in subscripts de
nates values at the trap center,Tei andTe' are the electron
mean energies of the motion parallel and perpendicular to
magnetic field (x axis!, respectively, and the normalizatio
constant is omitted. AlsoTei and Te' can be interpreted a
effective temperatures of the cold and hot electrons. Re
ence@17# exploited a relativistic version of the distributio
~1! for electron-cyclotron-emission studies.

Noncollisional electron confinement is assumed (le@L,
le is the electron mean free path, and 2L is the distance
between the plugs!; the trap is assumed to be adiabatic. U
der those conditionsf e depends only on integrals of motio
~energy and adiabatic invariant!:

mVei
2

2
1

mVe'
2

2
2ew5const, ~2a!

Ve'
2

B
5const, ~2b!

wherew is the ambipolar potential,B is the normalized mag-
netic induction@B(x5L)[Bp51; p in subscripts designate
values at the plug#, and2e is the electron charge. The inte
grals ~2! let us the compute the EDF at an arbitrary cro
section inside the trap:

f e5expF2
m

2Tei
S Vei

2 1Ve'
2 1

2e~w2w0!

m D
1

m

2Tei
S 12

Tei

Te'
DB0V'

2

B G . ~3!

Beyond the plugs we can again compute the EDF using
~2!. However, outside we should adjust Eq.~3!, taking into
account the fact that the large pitch-angle electrons refl
from the plugs and stay inside, i.e., the velocity space ha
empty region, in whichf e[0. At x.L, relations~2! are only
satisfied within one sheet hyperboloid in the velocity spa

Ve'
2 ~B2121!2Vei

2 52
2e~w2wp!

m
, ~4!

which sets the boundary of the empty region. In the veloc
space inside the hyperboloid, the EDF is determined by
~3!, while outside of itf e[0 @Fig. 2~b!#.

Generally speaking, at the central cross section, the E
differs from the model distribution~1!, proposed above
However, the difference, if any, does not cause a substa
error in our numerical simulations because we only use
EDF to compute the dependence of the plasma density ow
and B, i.e., we are only interested in the zeroth moment
the EDF.
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57 5939CONFINEMENT OF A MIRROR PLASMA WITH . . .
C. Gas dynamics of ions

We will assume that ions are being contained in the
dynamic regime (l i i !L; l i i is the ion mean free path fo
ion-ion collisions!. Hence ion collective motion can be de
scribed gas dynamically:

]

]xj
~Nv j !5G, ~5a!

]

]xk
~Nv jvk1pd jk!52

e

M
N

]w

]xj
j ,k51,2,3. ~5b!

HereN, v, M , andp are the ion density, velocity, mass, an
pressure, respectively;d jk is the Kronecker delta function
and G is the number of ions and electrons being born in
unit volume per unit time. The generation sourceG will be
neglected near and beyond the plugs@G(x.LG)50, LG
,L#. In order to take into account the magnetic field, Eq.~5!
needs to be supplied with an additional requirement: Ions
only move along the magnetic lines of force.

The ion pressure is approximated as an ideal gas pres

p5NTion . ~6!

The ion flow is conjectured to be isothermal@Tion(x)
[const#, i.e., we neglect gas cooling when it runs along
tube of flux.

It is convenient to convert from the three-dimensional d
scription to a quasi-one-dimensional one, assuming that
magnetic induction lines are almost parallel to the trap a
In order to do that, we need to integrate Eq.~5! over a trap
cross section and substitute Eq.~6! into Eq. ~5b!. The equa-
tions obtained are written in normalized variables

d

dx
~Snu!5gS, ~7a!

d

dx
@Sn~u21uT

2!#52ui
2nS

dF

dx
1uT

2n
dS

dx
, ~7b!

whereF[ew/Tei is the normalized ambipolar potential,n
[N/Np , u[v/cs , cs

2[(Tion1Tei)/M is the ion ‘‘sound
speed’’ squared,uT is the normalized ion thermal speed,uT

2

[Tion /(Tion1Tei), ui
2[12uT

2 , g[G/csNp is the normal-
ized density of the ion generation source, andS(x) is a trap
cross-sectional area. In that normalization, the model
comes a two-parameter one~if the magnetic system param
eters remain unchanged, the solution only depends
Te' /Tei andTion /Tei).

Equations~7! are two in number but have three unknow
functions:n(x), u(x), andF(x). We obtain the third equa
tion by assuming plasma quasineutrality,N5Ne , inside and
outside the trap. Integration of the EDF over the veloc
space yields

n5
12k

12kB21
exp~F! at x<L, ~8a!
s
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n5
12k

12kB21 Fexp~F!2A12B

12k
expS F

12k

12BD G
at x>L. ~8b!

k[(12Tei /Te')/R (R[Bp /B051/B0 is the trap mirror ra-
tio! and the ambipolar potential is chosen to be zero in
plugs (Fp50). If the EDF is strongly anisotropic,k.1/R.
B andS are given functions, connected by the condition
magnetic flux preservationS(x)5Sp /B(x).

From Eqs.~8a! and~8b! one can see how vital it is to tak
into account the empty region in velocity space. If we e
panded Eq.~8a! into the x.L region ~i.e., did not take the
empty region into account!, we would acquire an infinite
density blowup atB5k.

D. Boundary conditions

The set of equations~7! and ~8! is closed. In order to
complete the mathematical model, the equations need t
supplied with boundary conditions. Let the solution me
some physically backed restrictions:F(x), n(x), andu(x)
are smooth everywhere~except maybe the pointx5LG , at
which the ion generation is abruptly turned off! and

n~x→`!→0. ~9!

The symmetry of the model with respect to the central cr
section together with the smoothness requirement yields

u050. ~10!

Solutions to Eqs.~7! and ~8a! and to Eqs.~7! and ~8b!
should be matched in the plug at the boundaryx5L. Again,
from the smoothness requirement we have

up51, ~11!

i.e., in the plug, the ion gas dynamic velocity turns into t
‘‘sound speed.’’ A proof of the boundary condition~11! can
be found in Appendix A. Despite the EDF being no
Maxwellian, we deduced boundary condition, which is us
for the problem of gas flow from a vessel through a nozz

One more very important feature of the boundary con
tion is that it is in agreement with the Bohm criterion@18#. In
reality, the plasma is confined in some finite volume. T
plasma beam, extracted from the trap, hits a wall of
vacuum chamber or a surface to be processed that is mo
less absorbing. According to the Bohm criterion, ions sho
approach the sheath, which shields the plasma from the w
with a velocity greater than or equal to the ion sound spe
From the boundary condition~11! we obtain a supersonic
plasma flow beyond the plugs that fulfills the Bohm crit
rion. Outside the trap,cs is a true ion sound speed, withou
any quotation signs, because cold electrons dominate in
region andTei may be treated as a true electron temperatu

Now, having the boundary conditions~10! and ~11!, one
can integrate Eq.~7! outside the ionization region:

un5B, ~12a!
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1

2
~u221!1uT

2ln~n!1ui
2F[0. ~12b!

Further, the integrals will be used to estimate the heigh
the potential peak, plasma density, and ion lifetime. In ad
tion, the boundary conditions~10! and ~11! let us calculate
the normalization constant, ion density in the plug

Np5
1

Spcs
E

0

L

G~x!S~x!dx.

III. TYPICAL MODEL INPUTS AND
PARAMETER SPACE INVESTIGATED

Equations~7! and ~8! with the boundary conditions~9!–
~11! enable one to perform a numerical simulation. T
model inputs are the~i! geometry of the trap@magnetic in-
duction distribution B(x)#, ~ii ! density of the ionization
sourceG(x), ~iii ! ratio of the hot- and cold-electron temper
tures Te' /Tei , and ~iv! ratio of the ion and cold electron
temperaturesTion /Tei . Figure 1 displays the magnetic in
duction distribution in the trap we studied. In the center
has a constant magnetic field region of length 2Lc . We took
Lc5 1

2 L andR53.
The ion generation was assumed to be constant ax

<LG<L and zero atx.LG ~Fig. 1!. We simulated at differ-
entLG>Lc and found that the solution„F(x),n(x),u(x)… is
almost independent ofLG . For the results given below,LG
5Lc . The following range of temperature ratios was inve
tigated: Te' /Tei51 – 100 (Te'510 eV–10 keV, Tei
510– 100 eV!, Tion /Tei50.01– 0.5.

IV. ANALYTICAL AND NUMERICAL RESULTS

A. Self-consistent ambipolar potential

Numerical simulation, based on Eqs.~7! and~8! with the
boundary conditions~9!–~11!, lets us build a self-consisten
distribution of the ambipolar potential in space inside a
outside the trap. Figure 3 shows simulation results for
parameters characteristic for ECRH plasmas. In all cases
clearly see the ambipolar potential peak.

FIG. 3. Normalized ambipolar potential at intense ECRH (Tei
510 eV,Te'51 keV; here the potential is chosen to be zero at
trap center!. There is a slight potential dropoff at 0<x<Lc , which
is indistinguishable at that scale.
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Formation of the peak can be understood from the follo
ing qualitative reasoning. The hot electrons@see Fig. 2~a!#
are perfectly confined at the central part of the trap and
not penetrate deep into the plugs because of their large p
angles. Since the EDF is strongly anisotropic, the cold e
trons are few at the trap center~aboutTei /Te' of the whole
number of electrons!, but the losses from the region are d
termined just by the cold electrons. If the ion temperatu
Tion is higher than a certain threshold, the number of io
leaving the central part of the trap, due to thermal moti
exceeds the number of such electrons. Hence, in orde
balance the ion and electron fluxes from the region, th
should appear an ambipolar field, which reduces leakag
ions and stimulates electron losses from the central par
the trap. Thus it should be a region between the center
the plug where the ambipolar potential increases outw
from the trap center~see Fig. 3!.

Near the plug inside the trap, on the contrary, cold el
trons dominate. In this region, the ambipolar field must sl
down electrons and speed up ions; otherwise, due to the
motion, electrons would leave the trap faster than io
Hence, near the plugs the potential drops off. Thus, s
consistently with electron and ion flow balancing, we o
tained the ambipolar potential maximum~peak! between the
center and the plug.

At Tei /Te'!1, uT!1, we can estimate the height of th
peakDF[Fpeak2F(x5Lc) as

DF5uT
2lnFTe'

Tei
~R21!uTG1S Tei

Te'
D 2 1

~R21!22e
. ~13!

The derivation of the estimation as well as of the conditi
~14! can be found in Appendix B; here and furthere is the
base of the natural logarithm.

The peak cannot be observed if the ions are cold enou
For the plasma with the strongly anisotropic EDF, the pe
vanishes at

Tion

Tei
<S Tei

Te'
D 2 1

~R21!2e
. ~14!

The latter condition is almost unattainable, for instance,
Tei510 eV, Te'51 keV, andR53; the peak vanishes a
Tion51024 eV.1 K. Thus, under powerful ECRH condi
tions, the ambipolar potential must always have a maxim
between the plug and the central cross section.

In Fig. 4 we have plotted the peak heightDF versus the
ion normalized thermal speed squareduT

2 . The dependence
can be perfectly approximated by a straight line

DF~uT
2!5uT

2A,

as it is seen from the estimation~13!. However, according to
our numerical results, the slopeA of that line is bigger than
ln@(Te' /Tei)(R21)uT#.

One may prove analytically that in the case of the isot
pic EDF (Te' /Tei51! the potential peak cannot be observ
at any Tion . The potential decreases monotonically wh
going from the trap center to infinity~Fig. 5!. It was found
numerically that under weak ECRH (Te' /Tei;1), the peak

e
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57 5941CONFINEMENT OF A MIRROR PLASMA WITH . . .
appears at some threshold value ofTion /Tei . For instance, at
Te' /Tei51.10, the threshold isTion /Tei50.97.

Within the model framework, one can investigate the b
havior of the potential far from the trap (B→0). Equations
~8b! and ~12! yield the estimation

F}2 lnu ln Bu ~15!

and the potential slowly decreases to2`. Virtually, the es-
timation ~15! is valid only until the quasi-one-dimension
approximation is fair, the adiabatic invariant~2b! is being
preserved, and ion gas dynamics works.

If one modeled a trap with the Maxwell EDF not takin
into account the empty region in the velocity space@in order
to perform it Eq.~8! should be changed ton5expF#, the
analogous estimation would read

F} ln B.

References@7,3# used the potential profile with the peak as
hypothesis. They suggested a model profile with two para
eters: the height of the peak and the potential dropoff
infinity; these two parameters were computed using plas
experimental data (Tion ,Tei ,Te' , and the hot-electron den
sity @7#; Tion , the ion lifetime, and the ion density@3#!. The

FIG. 4. Height of the ambipolar potential peak vs normaliz
ion thermal speed squareduT

2[Tion /(Tion1Tei).

FIG. 5. Normalized ambipolar potential for isotropic ED
(Te'5Tei510 eV, Tion51 eV; here the potential is chosen to b
zero at the trap center!.
-

-
t
a

model presented not only deduces the characteristic poten
configuration, but also computes its exact spatial distributio

B. Density profile

The plasma density profile is very much dependent on
EDF anisotropy, i.e., on the ratioTe' /Tei . At large
Te' /Tei , the majority of electrons are hot electrons wit
large pitch angles. They are perfectly confined at the cen
part of the trap and do not deeply penetrate into the pl
Thus the plasma with a strongly anisotropic EDF is basica
being confined at the trap center, in the region of almo
constant magnetic induction~Fig. 6!. The localization of hot
electrons at that trap part has been observed experimen
@2#.

Having neglected in Eqs.~8a! and ~12b! that u(x5Lc)
and n(x5Lc) differ from u050 and n0, respectively, one
can estimate the normalized plasma density at the trap ce
as

n05AeFTe'

Tei
S 12

1

RD1
1

RG12uT
2

. ~16!

In the weak ECRH case, the EDF is almost isotropic and
plasma distribution over the trap is more uniform~Fig. 7!. At

FIG. 6. Normalized plasma density at intense ECRH (Tei510
eV, Te'51 keV!.

FIG. 7. Normalized plasma density for isotropic EDF (Te'

5Tei510 eV,Tion51 eV!.
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5942 57A. V. TURLAPOV AND V. E. SEMENOV
Te' /Tei51, the estimation~16! yieldsn05Ae. Far from the
trap (B→0), the density is proportional toB up to a loga-
rithmically slow factor. Thus, at infinityn vanishes and
thereby the boundary condition~9! is satisfied.

C. Ion confinement time

Let us define the confinement time as the number of i
in the trap divided by the ion flux through the plug

t5

E
0

L

NS~x!dx

NpSpcs
.

If the central trap region with a constant magnetic field
long enough (Lc&L), t can be computed analytically:

t5
LcR

cs
AeFTe'

Tei
S 12

1

RD1
1

RG12uT
2

. ~17!

The Ryutov-Mirnov gas dynamic trap model@13# assumes
an isotropic electron velocity distribution (Tei5Te') and es-
timates the ion lifetime astRM5LcR/cs . Obviously, tRM
factors out from formula~17!, which yields, in the isotropic
case,

t5
LcR

cs
Ae.tRM . ~18!

It is not surprising that formula~17! embracestRM as a
special case because both our and the Ryutov-Mirnov m
els describe ions gas dynamically and assumeTion to be
constant in the whole bulk of plasma.t tremendously differs
from tRM under a high-power ECRH. In order to picture th
difference we introduce dimensionless normalized lifetim

t[tFLcR

cs
AeG21

.

If the EDF is strongly anisotropic and the central trap reg
with constantB is long enough, then

t.FTe'

Tei
G12uT

2

or ln t.~12uT
2!ln

Te'

Tei
, ~19!

whence we see thatt is only dependent upon the distributio
anisotropy and upon the ratio of the ion and cold-elect
temperatures. In Fig. 8 we have plotted the results of num
cal computations oft in comparison with the estimation~19!.
The graph clearly shows that the normalized lifetime rises
the anisotropy of the distribution increases and as the
temperature~to be more precise, the ratioTion /Tei) drops
off. Comparing the factored out normalized lifetime with th
Ryutov-Mirnov one, we can see that the dependence on
ion temperature is very different in the isotropic and ani
tropic cases. At a weak ECRH, it is the quite slow squa
root dependence~18!, while at an intense heating it is expo
nential law~19!.
s

d-

n

n
ri-

s
n

he
-
-

D. Model limitations

Now, having studied properties of the model develop
we are in a position to elaborate upon the model limitatio
l i i !L andle@L. Let us write these restrictions on the me
free paths for the plasma in the plug, expressingl i i andle in
terms of the magnetic system parameters, temperatures
plasma density@L(cm); Tion ,Tei(eV); andNp(cm23)#. At
the plug, these restrictions are equivalent to the respec
expressions

1

2
310123

Tion
2

Np
!L, ~20a!

10123
Tei

2

Np
@L. ~20b!

If l i i !L is true in the plug then it is true in the whole tra
because the density monotonically decreases outward f
the center. Thus Eq.~20a! is the condition of ion gas dynam
ics use in the model developed. The condition~20b! of the
noncollisional electron pass through the plug is independ
of Te' because cold electrons dominate in the plug. It f
lows from Eqs. ~16! and ~20b! that 1012Te'

2 /N0@L, i.e.,
when the condition~20b! is satisfied, hot-electron confine
ment is also noncollisional. We do not demandle@L for
isotropically distributed cold electrons at the central part
the trap because their collisions do not change the EDF. T
Eqs. ~20! are sufficient~but not necessary! conditions for
applications of the model suggested.

It is worth noting that the validity of some of our resul
does not depend on whether or not the ion mean free pa
small compared to the trap scale. AtTion!Tei , one may set
Tion50 and sufficiently accurately compute the plasma d
sity and ion confinement time under any conditions onl i i ,
including thel i i @L case. This can be explained in the fo
lowing physical arguments.

At l i i .L, ion gas dynamic equations~5! still hold, but
instead ofpd jk in Eq. ~5b! we have the diagonal pressu
tensor pjk5NTion, j (x)d jk ; Tion,1(x)[Tioni(x) and

FIG. 8. Normalized confinement time on a logarithmic scale
normalized ion thermal speed squareduT

2[Tion /(Tion1Tei). A
comparison of the estimation~19! ~dotted lines! with numerical
calculations~solid lines! is shown for different electron tempera
tures:Te' /Tei5100 ~thick lines! andTe' /Tei510 ~thin lines!.
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Tion,2(x)5Tion,3(x)[Tion'(x). Now, in place of the uni-
form ion temperatureTion , we have second moments of th
ion velocity distribution, which are position dependent. Th
position dependence may be very strong because atl i i .L
unconfined regions of the ion velocity space are not fil
and dimensions of such a region acutely depend on whe
it is related to the point inside or outside the electrosta
potential well. Now, in order to compute the height of t
potential peak,Tion in formula ~13! must be replaced with
some functional ofTioni(x) andTion'(x). Our model cannot
compute the value of the functional and therefore is una
to predict DF with any suitable precision becauseDF is
almost proportional toTion or its substitute@see Eq.~13!#,
i.e., when we make a big error guessing the value of
functional, we make the same big error in the height of
peak. As we can see now, the potential is very much dep
dent on the validity of the gas dynamic approximation
ions. In order to find the ambipolar potential distribution f
the plasma with a large ion mean free path, the kinetic
scription of ions should be used, as it was done in comp
tions for plug/barrier cells of the tandem mirror machi
@16#. Alternatively, after calculation of the plasma lifetim
within our model, the Pastukhov formula@11# might be ap-
plied to findDF.

In the Tion!Tei limit, unlike the height of the peak, th
plasma density and confinement time are weakly depen
on Tion @see Eqs.~16! and~17!# and thus can be computed
the approximationTion /Tei.const50 for any ion mean free
path. That approximation will not bring about a substan
error. Of course, when we writeTion!Tei for the l i i ,L
case,Tion should be understood as some characteristic
ergy rather than as a true temperature because the ion v
ity distribution is non-Maxwellian in this case.

V. CONCLUSION

A model for the confinement of plasma with the anis
tropic EDF, given at the trap center, has been developed.
use of the model EDF lets us solve the confinement prob
without specifying a mechanism of electron losses.

The results obtained indicate that the distribution anis
ropy strongly affects the plasma lifetime, density profile, a
shape of the ambipolar potential. Under intense ECRH,
plasma is basically contained at the central part of the t
unlike the more or less uniform distribution forTe' /Tei;1.
As Te' /Tei exceeds a certain threshold, the self-consist
potential profile changes qualitatively: A peak appears
tween the center and the plug. It is very important to ta
into account the ion thermal motion when computing t
height of the peak because its height increases with the
crease ofTion /Tei and the peak does not appear at all wh
the ratio is zero. In experiments with a high-power ECR
the peak should be present at all achievable ion temperat
The enhancement of the confinement time with increas
EDF anisotropy ~at constantTion /Tei) is evident. The
plasma lifetime, computed for the particular case of an i
tropic EDF, is about equal to the lifetime in the Ryuto
Mirnov gas dynamic trap model@13#.

The model presented can be generalized for the des
tion of a plasma with ions of different charges. As befo
each type of ion can be separately described by equation
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quasi-one-dimensional gas dynamics~7!. Apparently, the ion
source (g) will depend on the densities of ions. The electr
density will remain dependent on the magnetic induction a
on the potential in the same fashion as given by Eq.~8!.
Obtaining a new boundary condition in the plug requir
further studies, but there is hope that it will remain as sim
as it is: In the plug, the gas dynamic velocity of each type
ion will be equal to the respective ‘‘sound speed’’~the speed
will depend on the ion charge!.
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APPENDIX A: PROOF OF THE BOUNDARY CONDITION
„11…

Solutions to Eqs.~7! and~8a! and to~7! and~8b! must be
smoothly matched in the plug atx5L. The boundary condi-
tion up51 can be found in the following fashion.

Equations~7! and ~8a! yield, atx,L,

n852
1

12u2 F2ug2nu2
S8

S

2nui
2 S8

S0 /~12Tei /Te'!2SG , ~A1!

where the prime stands ford/dx. It is evident from Eq.~A1!
that if u reaches 1 before the plug thenn8 goes to infinity.
Thusup<1.

Let up,1. Then np850. From np850 and Eq.~8a!, we
obtainFp850. Let us expand the solution in a power seri
of j[x2L (a andb are constants independent ofj):

B512bj21o~j2!, F52aj21o~j2!.

Expansion of Eq.~8b! up to first order reads

n512jA b

12k
expS 2

a

b
~12k! D1o~j!,

whencenp8Þ0, i.e., we have a contradiction to the smoot
ness requirement onn and F. At up51 the solution is
smooth. Consequently,up51.

APPENDIX B: DERIVATION OF THE ESTIMATION „13…
FOR THE PEAK HEIGHT AND OF THE CONDITION

„14… FOR THE PEAK DISAPPEARANCE

We start up from Eqs.~8a! and ~12!. Excluding n from
them we obtain

u5
B2k

12k
exp~2F!, ~B1!

1

2
~u221!1F1uT

2ln
12k

12kB21
50. ~B2!
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Differentiating Eqs.~B1! and ~B2! with respect tox and
equatingFpeak8 50 give

upeak
2 5uT

2 k

Bpeak
. ~B3!

From Eq.~B2! the height of the peakDF[Fpeak2Fc can
be expressed as

DF5
1

2
~uc

22upeak
2 !1uT

2ln
12kBpeak

21

12kBc
21

, ~B4!

where the subscriptc refers to pointx5Lc . Equation~B4!
has two unknown values:uc and Bpeak. To compute them,
we put Eqs.~B1! and~B2! together and, excludingF, obtain

ln
B2k

u
5 ln~12k!1

1

2
~12u2!1uT

2ln
B~12k!

B2k
, ~B5!

which is of course true both atxpeak and atLc . Assuming
that uT!1 and Tei /Te'!1, we get from Eq.~B5!, at x
5Lc ,
e

k,

.

J

.

uc5
Tei

Te'

1

Ae~R21!
. ~B6!

At xpeak, substituting Eq.~B3! into Eq. ~B5! and again
applying the same requirements onuT andTei /Te' , we can
compute a linear inuT departure ofBpeak from k:

Bpeak2k5uTAe~12k!. ~B7!

Assembling Eqs.~B3!, ~B4!, ~B6!, and~B7!, one finally ob-
tains the estimation~13!.

Now we turn to the proof of the condition~14! of peak
disappearance. We can rewrite Eq.~B7! as

Bpeak5B01
1

RFuTAe~R21!2
Tei

Te'
G . ~B8!

Bpeak2B0>0 becauseB0 is the minimum of the magnetic
field in the trap. Hence the peak vanishes as the value
square brackets in Eq.~B8! turns into zero, which gives us
the threshold condition~14!. One may check that when th
condition~14! is satisfied, the estimation~13! readsDF50.
.
g

i-

o,
@1# M. E. Mauel, Phys. Fluids27, 2899~1984!.
@2# V. N. Bocharovet al., Voprosy Atomnoi Nauki i Tekhniki—

Termoyadernyi Sintez~The Problems of Atomic Scienc
and Technology—Thermonuclear Fusion! 3, 64 ~1985! ~in
Russian!.

@3# C. C. Petty, D. L. Goodman, D. K. Smith, and D. L. Smatla
J. Phys.~Paris! Colloq. 50, C1-783~1989!.

@4# S. V. Golubev, Yu. Ya. Platonov, S. V. Razin, and V. G
Zorin, J. X-Ray Sci. Technol.6, 244 ~1996!.

@5# M. Sekiguchi, Rev. Sci. Instrum.67, 1606~1996!.
@6# V. G. Dudnikov, Rev. Sci. Instrum.67, 915 ~1996!.
@7# J. H. Booske, F. E. Aldabe, R. F. Ellis, and W. D. Getty,

Appl. Phys.64, 1055~1988!.
@8# H. R. Garner, T. Ohkawa, A. M. Howald, A. W. Leonard, L. S

Peranich, and J. R. D’Aoust, Rev. Sci. Instrum.61, 724
~1990!.

@9# G. Melin, E. Bourg, P. Briand, and R. Geller, J. Phys.~Paris!
Colloq. 50, C1-727~1989!.
.

@10# S. V. Golubev, V. E. Semenov, E. V. Suvorov, and M. D
Tokman, inProceedings of International Workshop on Stron
Microwaves in Plasmas, Moscow, 1993,edited by A. G. Lit-
vak ~Institute of Applied Physics, Russian Academy of Sc
ence, Nizhny Novgorod, 1994!, Vol. 1, p. 347.

@11# V. P. Pastukhov, Nucl. Fusion14, 3 ~1974!.
@12# F. Najmabadi, R. W. Conn, and R. H. Cohen, Nucl. Fusion24,

75 ~1984!.
@13# D. D. Ryutov, Plasma Phys. Controlled Fusion28, 191

~1986!.
@14# E. V. Suvorov and M. D. Tokman, Sov. J. Plasma Phys.15,

540 ~1989!.
@15# T. Tamano, Phys. Plasmas2, 2321~1995!.
@16# I. Katanuma, Y. Kiwamoto, Y. Tatematsu, K. Ishii, T. Sait

K. Yatsu, and T. Tamano, Phys. Plasmas4, 2532~1997!.
@17# C. M. Celata, Nucl. Fusion25, 35 ~1985!.
@18# K.-U. Reimann, J. Phys. D24, 493 ~1991!.


